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VOINTRODOCELON

N
fhe  3enecal  saanteens that  describe the rlow ¢r  the ocean are well

kopwn, but  for man. case: of interest, analytical szolutions are not

poszible because of 1rrveqular boundariss or significant won-linearities
1o the equat:ons. It 15 often possible to obtara useful aporoximate
soulutions usin3 numerical technigues. However, for reasonably detailed
numevilcal  models, very  large amounts of computer time arve regquired,
and 1t becoses imperative to seek oyt the wmost efficient numerical
aljorithms, In the case where forecasts are teing made on o real tine
hasle, the wuse of non-optimum  Schewes may result 1n unacceptable

Jelave.

ih1s  report descrites u class of techuiques for the efficient treatment
of bpodies of water with irrvegular boundaries. Realistic models of the
ocean c<tate wmust 1nclude wdequate treatment of the boundaries, the
irreqular  bottom topoaraphy, the shape of the caastline and the

coaplicated qeometry 8f aroups of 1slands.

Traditional numericul methods usind a rectanaular timite diffevence qrid
are surtable for eoxploratorv surveys of 1dealised pooblems where the ainm
1< to see why a particular svstem responds &s 1t does, and what effects
variations in the paraseters of the praoblem and the forcing terms have
Qi tie outcone.;T In order to nse these modele for complicated

¢
12 metvien, 1t as s neressary to use & very fide aqrid, and &

K

.




(arvesponding  1ncrease 1n computer time, or suffer from reduced

HCONT Ol .
e methods described here employ an avreqular triangular gric, tnstead
of & reqular vectangqulor 9qrad, so 1t 15 possible to fit empirical
bourdaries wWwith high precision without using prohibitively fine arius
thvoughovt the domain of the solution. The penalty for this 1s & slight

tncrease 1n the conplexity of the algoritha.

Triangular 3rids have been extensively used for elastic and plastic flow
problems with the finite element method (see for example, Strang and
Fix, 1973). These qrids have also been used in Lagrangian formulations
of the equations of hydrodynamics by Crowley (1971), Baris et al (192%)
and Fritts (1974), tut the Lagrangian method 1s most suitable for fTlows
where the total deformation of the fluid 1s small., Eulerian
calculations have been performed by Sadourny et al (1968), Williamson

(1968 and Thacker (1977).
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2 THE COUE

Thie report describes bkoth & methodology for constructing and using
troeqular trianqular  3rids for solving ocean flow problems, and a set
af computer programsfor 1mplementing, testing and evaluating the
nethods. The complete set of subroutines 15 qi1ven later as an appendix.
Certzin  details of the basic alqorithm arve bezt understood by reference
to the code 1'selt. 'he code has been desianed to be highly modular,
50 that zome effort must te expended 1n describing the interface to each

module.

To ma.1m1se the fle.ibilrty of the code, 1t has been wratten 10 a
superset of FGYTRAN which 1ncludes macrc expansions. By the use of the
fiie anclusion macro, $INLLUDE, common tlock maintenance 15 areatly
facilitated, while the bulk of the source code 1s reduced. Many
conpilers suppovt some form of file inciusion. The other use of macros
1 the code 1s to suppart parameters. Faraneters are used for values
which must take the form of constants, for exanple to dimension an
array. [The values may need to be changed to produce different versions
of the code, for exanmple to be able tv change the number of qrid points
or to handle different hardware confiqurations. The easiest way to be
able to employ macros 1s to use a simple pre-processor, which produces
as output & standard FORTRAN progran, which any compiier can then

accept. Alternatively, a teut editor may be used to perform the te:t




substitutions 1aplied by the macros.,

In the work that 15 described here, @ simple macro preprocessor based on

that of Kerntghan and Flauger (1976) was used.

The following predefined macros are assumed:

$HACRO (NAME, VALUE? Define @ new macro.

$INCLUDE(f1lenanme) Include a file in  the

source code at this

point.
$DELTOK Ielete the next input

token, normally a wew

Iine character.

The remaining nacros are defined 1n the code and nhave the following

uses:
IMAX Size of array 5.
TVHAX Si1ze of array IV.
ICHAX Size of array IC.
SERAS Si1ze of array ERAS.

.,.H’.»v—
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HAPNAXH

HAFMAXV

QUTLUN

CHARACTER

Horizoental page size in character widths,
Vertical page sizZe 1n character heights.

Logical unit number for the output Jdevice.

Type for character datue.




3 THL LRID

The camputational 3ri1d consists of an arreqular trianaular tesselation
which 15 tarlored to approximately correspond to the shape of the ocean
bacin  and  any rolands that are to be mcdelled. In order to be able to
couveniently handle such & graid on & computer, we must formulate a data
structure that vepresents the covrnect.vity and the qeometry of the 3rig.

First let us 1wntroduce two definitions.,

A vertex 15 defined as the point of otersection of & number of grid

lines.

A cell 15 @ trianqular redion tounded by three grid lines.

Next we wmust veter zpecifically to the code (31ven as an appendix) 1n
order to see row the data structure 1. ordanised. Cell connectivity
1aformation  ic held 1o the acray IC and verte: connectivity information

15 held 1n the arvay IV,

An 1nteqer expression [ 15 surd to point to a cell af IC(1) 15 the farst
word descraiting the cell, similarly an eupression 1 1s sa1d Lo point to

a vertex 1f IV(J) 15 the first word describing the vertex.

In addition, @& number of words of real storage are associated with eath

cell and verte: for storinq physical quantities. These are held in the




8
array S. 4
The first two words of storaae for vertices are assumed to be the
coordinates of the vertex. Where a vector field is to be represented, :
adjacent words i1n S5 are used to hold the components of the vector.
As an example, consider the shallow water equations., The physical
storage layoul associated with vertices 15 qiven below:
Word
0,1 Coardinates of the vertes. ? 
2-8 Weights for lumping, 2
9-15 Transport weights 1n the x-direction. P
16-22 Transport weights in the y-direction.
23 Depth,
24,25 Momentunm.
26-28 Momentum flux. k
29-1 Lurped depth and momentum field A. i
32-34 Lusped depth and momentum field B.
3937 Lumped depth and momentum field C. |
i8.39 Force.
40,41 Coriolis tern.

The meanings of these fields are describied elsewhere.

i
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The layout of connectivity iaformation for a cell i1s as 3iven below:

1C(I) Pointer to the S array.

ICEL+1) Fointer to the Ist vertex that defines the cell.
ICCI+ 2 Pointer to the 2nd ver((x that defines th( cell.
IC{I+3) Pointer to the 3rd vertex that defines the cell.

The layout of connectivity informsation for a vertex 1s 3iven below:

ven Fointer to the S array.

IV(I+ 1) Number of adjacent vertices, N,
IVer+2) Pointer to the 1st adjacent vertex,
IV(I+3) Fointer to the 2nd adjacent vertex.
IV(I+4) Pointer to the 3rd adjacent vertex.
IV(I+35) Fointer to the 4th adjacent vertex.
IVII+é) Fointer to the 5th adjacent vertex.
IV(I+7) Pointer to the 6th adiacent vertex, or

link to next boundary vertex.

ke 4arid 15 assumed to have the same topoloav as @ tessalation of
equilateral triangles. Arbitrary boundaries may be 1mposed subject to
the constraint that 1nterior boundaries (i1s5lands) Jo not have acute
anyles., Since the arid 1s deformed tefore use, this does not 1mpose

any restriction on the actual shapes of islands that may be handled,

however the grid would te more than usually deformed 1n the neigzhborhood
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of such acute features.

At this powint 1t 1s appropriate to  examiae portions of the code 1in
detail, -0 we will examine the subroutines that play an importamt part

in constructing the arid data structure.

HEXTOF 15 a subroutine that constructs a grid with the same topoloay as

a hexaqonal reglon divided into triangular cells. It 1s called ty:

CALL HEXTOP(N)

Each c1de of the hexagon 15 divided i1nto N seqments.

Bv 1nspection, we nmay see that the qrid has 6 N triangular cells,

JOIN+1IN edges and J(N+1)HN+1 vertices.

HEXTOF qenerates the pointers to vertices that are stored in IC, by
using the subrotitines GUC and GDC which qenerate “upward’ and ‘downward”
pointing triangular cells, HEXTOP counts the total number of ceils

allocated 1n NUMC, and the number of vertices in NUMV.

Next, HEXTOF generates the links i1n each vertex data structure, by

examining each cell and naking sure that all vertices surrcunding a cell

are joined together by using the subroutine VLINK.




Finally, HEATOF  determines  which vertives lie on the houndary of the
reqion by countind the number of odjucent vertices. The boundary points

are contained 1n a linked list data structure.

HEXTOP 1s designed as a specific tool for qeneratiny & class of
topologies that are useful for investigating the properties of advection
schemes and 1n simulations of any unbroken region that has approximately
circular boundaries. in addition HEXTOP 1llustrates the methods that
may be used to gqenerate even more complicated topologies, such as 4rids

with 1mbedded holes. Ftromn the human engqineeriny standpoint, an

interactive conputer system with a display screen and light pen would be

more convenient for gqenerating gqrids from real occean Maps.

GDC and OUC are cell generating subroutines for downward awd upward o
pointing cells 1n @ trianqular tesselation. A downward pointing cell is

jenerated by the call:

CALL GDCCIF)

where IF points to the upper left tand vertesx. It is assumed that the

following vertex, [P+IVSIZ, {5 the upper rigqht hand verte:. and that

the most recently defined vertex is the lower verte:. After qenerating
the cell-vertex links for @ new cell, GDC returns after incrementing IP

to the next vertex. !




GUC works 1n o complementary fashion.

A call

CALL GUCCIM)

assumes that IF points to the upper verte ot @ cell. The maost recent
vertex 13 assumed to be the lower left vectex, 0 GUC generatec o new
vertex fov the lower right hand vertex and constructs a new set of

cell-vertes pointers, I[P 1s left unchanged.

By alternating calls to GUC and GDC 1t 1s simple Lo construct an
arbitrary tesselation of triangqular cells, with all the required

pointers to define the torology of the grid.

VLINK 15 a subroutine that emsures that two vertices are linked together

in the order qiven. It 15 called as follows:

CALL VLINK(IVA,IVE)

Verte. IVA 15 examined to see 1f 1t 15 already marked as having IVRB as a
neighbor, 11 50 VLINK exits without doing anything extra. Otherwise
the wvertex count for JVA 1s i1ncremented and a link to IVB 1s placed in

the next avallable vertex link p-sition. To correctlv link two

vertices, two calls to VLINK are required:

te




TAML VLINKCIVA, VR

CALL VLINKCIVE, IV

The subroutine VSTD assiqns storade space t0 the vevtices from the array

of storage S. It 15 called as follows:

CALL VSTO(IORIG,NUDS)

The first word allocated 1s =(IORIG) and & total of NWOS words are
ass19ned  foir each verte:u. NWDS  should be equal to the nuaber of
physical wvariable fields required in the ¢olutions of the equations of

hydrodynamics.

CIRBND 15 an example of a procedure that fixes the co-ordinates of the
boundary vertices, in this case by distributing them uniforaly in a

circle. It may be called without any arguments.

CIREND 15 used with HEXTOF and SUGRID t. defime & circular ocean basin

for testing purposes.

An assumption is made 1n  CIRBND that all toundary vertices lie on a
sinqle exterior boundary, and that the links between boundary vertices
follow serially around the boundary. This is true for HEXTOP, but need

not te so for other topology 4qeneration subroutines. A more general

13




koundary  fixing routine would be needed for multiple Lwoundaries, and
shouldprobatly be embedded in the framework of an 1nteractive comnputer

svstem, as discussed elsewhere.

VCDUNF 15 3 subroutine Tor printing out the links associated with each
verterx and cell., It 1s calied without anv arquments. This routine has
proved useful as a diaqnostic during the 2ebuqgqing phase of new tapology
Jeneration  subrouliaes. It 1s also 1avoked when code Jdetects an
inconsistency 1n  the links, <caused by 3 logic error :n the topology
routirne, or more wusuwlly by storage corruption caused by arrvay bound
overflow or subroutine arquaent 1nconsistencies, which traditionally

are not detected by FORTRAN compilers.

The last subroutine 1n the 4qrid btuilding suite is SUGRIL, which
calculates the co-ordinates of all the interior vertices. It is called

as follows:

CALL SUGKID(NITER)

Interior vertices are #moved so that the co-ordinates of each vertex is

equal to the averaqe of those of all i1ts neighbors. This i1nvolves

splving a system of 2N linear equations, where N is the number of

interior vertices.

The equations are amenable to 2 reiaxation procesc oaf the wmost

ai am

.




straiqhtforward kind. A relaxation parameter RELFA 15 wsed to improve

the convecgence of the process.

Empirical tests with simple grids of varlous sizes have shown that RELPA

= 1,388 seens to be close to the optimum value.

A total of NITER 1terations is performed, and for each iteration, the
maximum displacement of o vertex 1s printed, 1in order to illustrate the

convergence of the 1terative solution.

On the basis of experience with other relaxation sethods applied to
elliptical systems of partial dJifferential equations, it 1s believed

that SUGRID is uwconditionally stable for a finite range of RELFPA.

The suite of subroutines that has been described above has been
specifically written Lo constvuct the data structure for o circular
ocean basin, but siaple modification to CIRBND, for example would
permit irregular quasi-crvcular basins to be treated. If the basin was
qrossly dissimilar to & circle, or hasd a different topology, for
exanple, containing 1slands, then the routine HEXTOP would have to be
replaced. The following algorithm 1s proposed for the eneratian of

qrids for real-woirld oceanoqraphic simulations:

First =assemble @ number of equilateral triangles to approximnately

represent the regicn of interest. For exanple, HEXIOF uses 51
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trmangles 1n the form of & hexaqon to represent a circle.

The next step 15 to subdivide the triangles 1nto a tesselation of
smaller egquilateral triangles until 1t 15 estimated that there =wre

sufficient cells to resolve the solution structure that 1s desired.

Trianqular cells are next removed from the 1nterior to represent 1slands
and trom the extericr to better represent the ocean shore. The vertices
on the exterior and i1nterior boundaries are then assigned the actual

coordinates of associated points on the actual coastline.

The final step 1s to relax the interior points to obtain a grid with a
s4oath transition of cel) size. The whole procedure would test be done
on a conmputer system under 1nteractive comsand. A video a4araphics

display and @& lightpen would be wmost appropriate for adjusting the

coastline pounts in order nate the qrid as uniform as possibie.

16
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4 ThE ALOGORITHM 1 OK HYCRODYAMICS

In most fluid dvnamics c<imulationz the must troublesome terms 1n the

equations are the von-linear ones. JThe advection of & scalar fi1eld may

he wused 1llustrate tne alqoritha that 1s used for more complicated

cases,

The governing equation for a scalar field 152

Alternatively, ty  Stoles” thaovem, we can say that for any reqion 1,

tounded by a curve 5, we have

where dg 15 normal to the cueve 5, and ¢~ 15 the averasge value of ¢

1h the reqion 1.

In & fini1te representation of ¢ using a qrid of points on & trianqular
mesh, 1t 1s ronvenient to store the value of p at the vertices of the

ar1d, =and to consider a reqlen surroundingd  each vertex which we will

- e e ——————




(all a flux cell.

A flu. cell 1s an 1rceqular and cometimes mon-convex polygon that
cont«1ns anly one wvertex. Each si1de of the polyqon starts at the
rent-oid of a cell adiaceat to the contained vertex and finishes on the
mrd-point of & side of the cell that passes through the contained
vertex. It 1s clear that ao part of the redqion defined by the grid lies

outside of all flux cells.

A flux cell surrounding a verte:x wilh N neighboring vertices 1s &

polvaon with 2N sides.

Averaqes of & variable within o flux cell are termed “lumped” values and
are associated with the contained vertex. If the values of the variabtle
are to be represented by 1ts values at the vertices only, a&s is usual
for &nv finite difference scheme, then we mav uniquely approximate the
variable at any point by linear interpolation between the vertices of
the cell containing the point, Witk this representation of the
variable, we may eractly calculate lumped values bv integrating over
the flux cell. Similarly, the line 1integral above, wmay be exactly

evaluated wround the flux cell.

Dur advection equation 15 conservative 1n the lumped values eof the
scalar variable. Fluxes are derived bv first evaluating the unluaped

values at vertices, evaluating the non-linear flux terms at each vertex

-t




and then restorming linear interpolation.

Thus, we have @ simple, non-ambiguous algorithm for discretising the

cantinuous equations of hydrodynamics.

The line and surface 1nteqrals of interpoluted fields may be exactly
represented by o weighted sum of vertex values in the vicinity of the
region of integration. The weights do not change with time, so the
complicated inteqrals may be simply evaluated with a mimimum of

conputational effort.

The subroutine CVLY calculates the weiahts A, Bj regquired to calculate

the vertex lumped values Fi

Fi= A F1 + Z: Fi by

where 1 1% 3 vertes which neighbors vertex 1.

Consider @& vertex 1 and o cell k. The field F 1, defined at 1 and the
other two vertices o and 9 such that the cell v 1s defined by the
triangle i1pgq. If we aprroximate F within # by linear 1interpolation, we
nay 1nteirate F withie the quadrilateral ip’gq” where 97 15 the midpoaint

of 1p and p 16 the midpoint of 1p. and g 15 the centroid of 1pq.

This inteqral is

19
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20
ok = U 11754 F1 o+ 77108 Fp 477108 Fql
; where .k 15 the area of cell k.
The vertex lumped value of F at 1 15 the sum of @k over all
quadrilaterals as atove which have 1 as & vertex. The weights A and B}
may thus te seen to be ¥
5
A+ = 11/54 S.}.u ﬂl
'S .
| £
— v,:i
Bi = 77108 " Mk b
- |
'y
- 4
uherelqk S k if | 15 @ vertex ot k, else L jk = Q.
|
CVLW is 1nvoked as follows:
|
|
CALL CVLU(TIFOS) :
|
'
IFBS 15 @ pointer to a set of 7 variable locations whichk wre to contaiwn ]
the values of A and k).
The subroutine

CTW computes the weishts A and By to calculate the line

integqral T of & vector flux F around a

flux cell surrounding @ vertex 1,




where

and | 15 a vertex neighboring 1.

A and B) are vectors associated with vertex 1 and are stored with their
x-components at IFOS and 1IP0S+J respectively. The y-components are

stored 7 locations after the correspondini x-component.

The flux cell around & boundary vertex 1s truncated by the actual
boundary, s0 that part of the line 1ntegral must be evaluated along
sections of the boundary, however, straightforward use of linear
interpolation suffices to calculate A and By. The details of the
alqorithm need not be described here, since the code itself serves to

define the method.

The subroutine ts called as shown:

CALL CTW(IFOS)

where, as before, IF0S 15 & poanter to the region of stornge that is

to contain the weights. [n this case 14 words are required to store the

vector wei1qhts,

e e e




22

The correctness of the aljorithm may be tested by the subroutine TSTCTU,

which evaluates the line antegrals for & flux of (1,0) and (0,1) for the
btoundaries of the flux cells containing each vertex. Nithin the limits

of rounding errors, the two integqrals are zero.
TSTCTY 15 called as shown:

CALL TSTCTH(IPGS)
where IP0OS 1s the pointer to the weights 3enerated bty CTU.
LUMNP 1s the subtroutine that calculates the integral of & physical
variable field over the flux ceil that surrounds each vertex.
The subroutine LUMP 15 invoked as follows:

CALL LUMPCIPOS,IFROM,ITOD)
IFOS 15 & pointer to the set of weights that have previously been
calculated by CYLW, and IFROM and ITO are pointers to the source and
destination fields respectively.
The lumped vartable 1s stored at location ITQ after calculating

Fi = R.F1 4_FJ.FJ




where A and Bk are the weights and Fj is the value of the field at

vertex ). | 15 a neighbor vertex of vertex 1.

UNLUNF 15 & subroutine which 1s the formsal inverse of LUMF. It w1ll
vecover the original values of a field that has previously been smoothed

by LUNMF. It 15 invoked as shown:

CALL UNLUMP(IPOS,IFROM,ITO,ERR)

1P0S, IFROM @&and ITO have the same meaning as in the above description

of the subroutine LUMF.

The system of linear equations for Fi, gqiven Fi 15 solved by relaxation
nethods, with a final accuracy estimated to be on the order of ERR if

possible, otherwise an ervor message is printed.

ihe subroutine ADVECT 1s called as follows:

CALL ADVECT(IFCN,IFCL,IPC,IPU,IPU,DT)

This subroutine perfaorms the basic advection of a lumped scalar field at
location [IPCL using the unlumped velocity whose x- and v-components are
located at IPU  and IFU#Y, Transport weights are located at IPW, The

time 1nterval for integration 15 0T and the new scalar field 15 returned

23
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to the location IFCN.

The subroutine ADVECT wodifies @ lumped momentum field to ensure that
the corresponding momentum values on the qri1d boundaries are zero. This
1s egquivalent to 1mposing a rigid boundary condition at the edqe of the

computational domairn.

The subroutine STEF is called as follows:

CALL STEP(IPLN,IFULN,IFVLN,IFLO,IPULO,IPYLO,IPL,
IPUL,IPVL,IP,IPU, IPV, IFUY,IPUY, IPVY,
IPFX,IPFY,IPFXL,IFFYL,1PW,DT,F,CF,

HSX,USY)

The STEP subroutine advances the fields of the physical variables one
tine step for the shallow water equatione. The values of the dependent
variables, height and horizontal momentum components, at the start of
the step are denoted with a suffix ‘0° for “0ld’ while the values
corresponding to the end of the step have a suffix “N° for “New’. STEP
first unlumps the fields 1in order to calculate pressure and Reynolds
stress terms, then uses the transport aljorithm and finally i1mposes the

boundary conditions,

The subroutine TRNSPT, which 1s called as shoun:




CALL TRNSPT(INEW,IOLD, IFX,IFY,IPU,0T)

evaluates the chandqes to a lumped field for & time step DT, The
ori1dinal luwped field 15 located at IOLI., The field after modification
for the effects of transportation 1s returned to location INEVU. The
transportation 15 effected by a flux field whose x- and y-components are

located at IFX and IFY respectivelv.

The shallow water equations contain several terms which are not of an
advective nature. These terms are qenerally easier to treat in a
numerical scheme than the non-linear advective terms. He will refer to
the non-advective terms as forcing terms. The subroutine FRF 1ncludes

the effects of the following forcing terms:

1) Frictional term with a coefficient of friction

€f and & linear dependency with the fluaid

speed.
2) Coriolis term with a parameter F.
3 An externally 1i1mposed stress (WSX,NSY) which

may be regarded as representing the effects of

wind on the fluid.

25

DU T WO 3




The subroutine 1s called with the arquments

FRFECIPL, IFUL, IPVL, IF, IPU, TPV IFFX, IFFY, IFFXL,

IFFYL,DT,F,CF,USK,NSY)

IF, 1FU &nd IPFY are pointers to unlumped depth and momentum components.
FL, fPUL  ang IPVL are the locations of the corresponding lumped
fields, TFFX aud IFFY are fields used to store the combined frictional
and  external cstresses. IFFXL and IPFYL are used to locate the lumped
values of the previous two fields, Upon exit from FRF the momentun
fields are modified to reflect the time 1ntegrated effects of the

forcing terms over a time 1nterval DT.

Two main prodram  are 1ncluded in the appendix. The first 1s used in
siaple test solutions for the color equation, in order to examine the

stability and accuracy of the basic advection algorithnm.

The second subroutine 1s a driver for the shallow water egquzations and
1ncludes calls to the qraphics routines which are described 1n the next
section. The subprogram makes two calls to STEP, since the basic time

Zifferencing scheme that 15 employed 15 the robust pseudo-backward Euler

nethod.

26
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% QUTFUT ROUTINES

In detudqing the code and evaluating the performance of the numerical
schene that 1t embodies, grachical cutput 1s an invalusble taol.
Simple listinas of field valuec gqive lattle 1ndication of the actuzl
tehavier of the wmodel bheing simulated, especiaslly when an trreqular
grid 15 used. A number of routines have bheen produced, which serve 1n
theaselves a3 valuable aids, while at the same time Tforminy a set of

primitives for more elaborate displays.

The QPRCON subroutine 1s & simple display procedure for producing
contour plots of a field on @ hardware device such as a lineprinter. It

15 called as follows:

CALL QPRCON(IFLD,XHIN,XNARX)

IFLD 1s & pointer to the field that 1s to be displaved. A single
character, either a di1q1t or a plus or minus sign 15 placed on the page
at a position corresponding to a vertex location. The character
represents the value of the specified field, with 0 corresponding to
XMIN and 9 corresponding to XMAX. Intermediate values are represented
by @n appropriate decimal value wusing & linear transfe: function.
Values less that XMIN are shown by & minus s519n while values larqer that
XMAX are shown with & plus siqn, If the grid is coarse, the display
will be sparse, but GPRCON has the advantage of representing both the

4r1d  structure and the field, so that irudgqements may be made as to the
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reality of features with scales near that of the basic qrid.

FRCON 15 @& subroutine that 1s functionally similar to GQPRCON, having
the same arqument list, except that the field values for space between
vertices are also displayed. Each character space on the output page is
napped 1nto the grid, and 1f the point lies within the boundary of the
qrid, the wvalue of the 1input field, IFLD, 1is evaluated by linear
1aterpolation. The running time for PRCON may ke much larger than that
for QPRCON, especially when the the number of vertices is less that the

number of resolvable positions on the output page.

The routine CONFLT generates @ contour line plot of the specified field.

It 15 called by means of:

CALL CONPLTC(IFLD,CONVAL,N)

Contour values are printed for values CONVAL(I), I=1,N. CONPLT is
suitable for all types of contour plotting devices such as pen plotters
and electrostatic printer-plotters, since it nmakes use of only one
system dependent subroutine, LINE, for drawing a straight line

sequent.

The DRAWY subroutine 1s called as follows:

DRAWVCIPL, IPUL, IPVL,IP,IPU,IFV,ASCALE, IPW)
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The [ORAWV  subroutine qenerates a display of the velocity field i1mplied
bv the lumped depth and momentum fields located at IFL, IPUL and IPVL.
The fields IP, IPU and 1PV are wused as workspace for calculating

unlumped values of the physical variables.

The COMMON variable SCALE is used to transform from ar:1d rpordinates to
plotter coordinates. After unlumping the fields, the wvelocity
components are extracted from the momentum fi1elds. At each vertex of
the girid, an arrow 1s drawn with a length proportional (using the scale
factor ASCALE) to the velocity at the specified point, No attempt is

made to draw wrrows that are so small as to be unresolvable.

DRGRID 1s a subroutine that has no argquments but that may be used for
drawing the triangqular qrid on a scale similar to the other plotting
displavs. so that 1t wmay be used to overlay contour or vector field

representations.,

The subroutine DKRCELL 1s similar {o DRGKID, also having no arquments,

e.cept that 1t draws the outline of the flux cells that are used for the

line 1nteqrals 1n Stokes” theorem.

EUPLOT 1s a subroutine with the following calling sequence:

CALL EWPLOT(IP,ZMAX,ININ)
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The EWPLOT subvoutine 1< used to qenerate a plot of the field located at

I, along the line Y = 0. The actual plot 15 produced by printing
characters, 1n @ way sultable for use with a lineprinter. The marimum
and minimum  values that may be displayed on the page are given by IMAX

and ZMIN respectively.

INTFOL 15 the basic interpolation subroutine used by the other qraphics
subroutines for extracting field values from arbitrary positions on the

artd by  means of linear 1nterpolation. It is called as follows:

CALL INTPOLCIFLD,X,Y,Z,FAIL)

The postion specified 1s given by the coordinates (X,7) and the value of
the field indicated by IFL 15 returned in the variable Z. If the point
lies outside the boundary of the arid, the logical variable FAIL is set
to betrue. INTFOL works bty examining each cell 1w turn until one is
found that contains the required point, so 1t 15 relatively time
consuming, especlally when 1t 1s called many times, as in the

subroutine PKCON.

The vroutine could be increased 1n speed by introducing & relatively
coavse rectanqular grid and associating @ linked list of trianqular cell
rumbiers with each rectangqular cell. The search could then bte performed

on @ much shorter list, the particular list being determined by direct
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conputation firom X and V. This would be analogous to hash coded
searches 1in standard table look up problems, with the added advantage
that each 1list would be approximately the same size, soc the look up

tine would be both short and predictable.

INTRI 15 function that vreturn a wvalue of LOGICAL type. It may be

referenced by:

INTRI(X,Y,ICELL)

The returned value is only true 1f the point (X,Y) lies inside, or on

the boundary of the triangqular cell number ICELL.

The subroutine MAXMIN, which 1s called ty:

CALL MAXMINCIFLD)

prints out the maximum and wminimum values of the field specified by

IFLD.

The function NEIGH returns & LOGICAL value 1f the two vertices specified

by IF and 10 are neighbors when 1t 1s called by the sequence:

NEIGH(IP,IQ)
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The subroutine FPRFLDS, called by

+

CaLL PRFLDS(I1,I12)

prints out the values of all the fields in the range from I1 to I2 in
tabular form for each vertex. If needed the table 1s split into several
parts so as not to exceed the width of the lineprinter page.
The VCDUNP subroutine displays. on the printer, all the links
assotrated with the cell and vertex data structures. VCDUNF Jdoes not !
take any arquments, '

CONSRV 15 & subroutine called as follouws:

CALL CONSRV(IFROM)

This diagnostic routine evaluates and prints the sum of the values of a
variable at each vertex of the grid. If the variable is a lumped field,
the sum 15 the spatial i1ntegral of the corresponding unlumped field,
The routine has proved itself useful in code testing by evaluating the ,
integral of fields that should be formally conserved i1n time hy the

systen of equations.

The COPY utility, which is called by:
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CALL COPY(ITO,IFRONM)

15 used 1in many places throughout the code to transfer a physical

variable field from one location IFROM to another location ITO.
The subroutine FLDAV is a utility procedure which 15 called by:

CALL FLDAV(IFOSA,IPOSHE,IPOSC)

It calculates the average of two fields indicated by IPOSBR and IPOSC and

returns the result to the location IPOSA.

INITF is a subroutine used to set up initial fields of unit depth and

zero momentun. It is called by:

CALL INITFCIP,IPU,IPV)}

The subroutine SEROT 1mposes a velocity field appropriate for a solid

body vrotation with an anqular velocity of ONEGA. The resulting
conponents are stored at locations IPOSU and IPOSU+1 when 1t is called

by

CALL SBROT(OMEGA,IPOSU)

The TFIELD subroutine sets up a scalar test field which 1% a compact,
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coatinuous and differentiable piecewise bivariate cubic, 1n the shape
of an off-center “hump’. This field has proved useful for studying the
advection of @a scalar field under solid body rotation. Although this
problems is analytically trivial since the field merely rotates with the
flow without changing shape, it is gquite non-trivial computationally
and provides a powerful test for cosparing the efficacy of different

numerical advection schemes. It may be invoked by the call:

CALL TFIELD(IFOS)
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6 RESULTS
A sequence of numerical experiments uere perforned with the code during
its development in order to provide answers to the following jJuestions:
, - 4
1) Can a simple algorithm be developed which 1s i
capable of solving the equattons of hydrodynamics
N
with the physical variabkles approximated by values ]
on an 1rregqular qrid? ,
H
2)  What are the limits of the stability of the o
nunerical schene?
r
3) What is the accuracy of the scheme, especially in 1
1
the treatment of the dominant non-linear advective 3
terns? i
4) What computing resources are regquired to use the
alqorithna? ‘
3) How does the algorithm compare to orthodox finite :
difference schemes? !
The answer to question 1) 1s clearly ves. The scheme that has been

described 15 certainly simaple and eleqant. Some slight complications

are inherent 1n using an irreqular grid, but all the qeometrical and




topological factors are resolved once at the start of & simulation and

are 1ncorporated 1n the weigqht terms and the cell and vertex links.
During execution the scheme 15 fully explicit, except for the siaple
relaxation scheme that 15 used for “unlumping” the physical variable

fields.

One especially satisfactory feature of the alqorithm 1s that, for the
treatment of spatial derivatives at least, there are no arbitrary
decisions to be wade in setting up the difference equations. Most
finite difference sctiemes are overdetermined, 1in the sense that several
di1fferent representations have similar spatial order of accuracy, with
often no obvious means of resolution. Also the present alqoritha may be

readily generalised to more comnplicated situations.

The answer to question 2) 15 not capable of analytical solution, so we
nust perform experiments and make cautious inferences. Most finite
J1fference schemes that are explicit 1n time differencing must have some
constraint on the maximum time step 1n order to satisfy stability
criteria, It these stability criteria are not satisfied then =@
‘computational mode’ solution may be obtained. These frequently exhibat
hiqh spatial frequency oscillations and bear no resemblance to the

solutions of the underlying differential equations.

Some numerical schemes, such as the Dufort-Frankel scheme, while being

explicit in time, Hhave no formal constraint on the time step. However
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they achieve stability at the expense of introducing increasing amounts

oi artificial diffucivity as the time step 15 made larger. In =¢dition,
even schemes that make use of 1maplicit time differenciny, such as ADI
methods are still in practice limited by the need to maintain adequate

accuracy 1n the time integraticn.

A number of numerical tests have teen performed hoth for the scalar
advection code and the shallow water e¢gquations. Far semi-reqular 3rids
the nmaxinum time step for stability was observed to he 1nversely
proportional to the mean inter-vertex spacing, while for more irregular
qrids the maximun stable time step was found to be more closely related
to the 1inverse of the minimum inter-vertex spacing. The latter result
is hardly suprising buet it does mean that when constructing an irregular
qr1d to follow & coastline of c¢reat complexity, 1t pays not to use
qratuitously small cells. However if the boundary points are reasonably
distributed =along the coast, and the 4grid topology is appropriate to
the computational comain the use of SUGRID or its generalisation will

ensure that no excessively small inter-vertex spacings are generated.

Overall, it has been found that the stability behaviour of the
trianqular grid scheme 1is qualitatively and quantitatively similar to

noce conventional rectangular grid finite difference schenmes.

Some answers to question J) have been obtained by solving the color

equation for a solid body velocitv field. Such an equation has a
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trivial a3nalytical solution so we may i1nvestiqate the acturacy of the

scheme 1n 1ts treatment of the all 1mportant advection tern. For a
circular basin of umit radius, @ solid body rotation law and an inmatial
field determined by the sutroutine 1FIELD, 3Jood results were obtained
even with a very coarse grid. For example with a typical 1nter-vertex
spacing of .125, the bell shaped test field only suffered about 10X
error after a complete carcuit of the qrid. Since positivity 1s not
ensured tv the scheme, some small neqative and rpositive ripples were
observed, especially 1n the wake of the "hump", but these always
renained small 1n maqnitude. The algorithm has second order spatial
accuracy so 1n the limit of fine grids, error estimates may be easily

calculated.

Question 4 may be answered both on theoretical estimates and on the
resuits of the numerical experimeats that have been performed. If we
take as a measure of the qrid complex1ty some number N, for example
NUMDIV as used 1in the code, or the reciprocal of the 1nter-vertex
Spacing. Then the number of gqrid points for which calculations must be
performed 1is N#*+2. The solution of the system of linear equations for
the unlumping operation requires on the order of N**3 operations, since
1t 1s 1terative, and information must be propagated over the whole grid
in order to effect a solution. For each time step, the computational
effort has two factors, one proportional to the square of N and the
other proportional to the cube of N. For moderate values of N up to

about 20, the first term 15 dominant, For fine scale simulations,
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however, the effort of the UNLUMP operation will dominate the solution.

The maxinum permitted time step varies inversely with N, s0 a complete
simulation will take & time that is proportional to the cube of N for

coarsé 3rids and the fourth power for sufficiently fine grids.

There 15 no clear cut answer to the final question. Some cartesian 3rid
nethods maintain N#+3 timing, and so for very fine grids, will be more
efficient than the irreqular trianqular grid method. On the other hand,
irreqular boundaries a3y require excessively fine qrids tor the
cartesian grid methods, so their theoretical edge may not be marntained
1n practice. It has been demonstrated that irreqular triangular grid

methods can be applied to the equations of ocean flow, without undue

penalties in computer resources, or complexity of the final code.

39

PR VT




7 REFERENCES

Bari1s, J.P., Hain, K. L. and Fritts, N.J., 1975: "Free surface
hydrodvnanics using a Lagrangian triangqular mesh". Proc. First Intern.
Conf. Numerical Ship Hydrodynamics, 20-23 October, David W. Taylor

Naval Ship Research and Development Center.

Crowley, §.P., 1971:  “FLAG: A free-Lagrange method for numerically
sinulating hydrodynamic flows in two dinensions®, Proc. Second Inter.

Conf. Numerical Methods in Fluid Mechanics. Springer Verlag.

Kernighan, B. u. and Plauger, P. Joy 1976: “Software tools”.

Adison Wesley, 338pp.

Strang, 6. and Fix, F. J., 1973: “An analysis of the finite elenent

nethod". Prentice-Hall, 304pp.

Sadourny, R., Arakawa, A. and Mintz, Y., 1968: “"Inteqration of the
non-divergent barotropic vorticity equation with an 1cosahedral
hexagonal 4grid for the sphere”. Numerical Simulations of Uezther and

Clinate Technical Report number 2, U.C.L.A.

Thacker, v.C., 1977: “Irreqular gqrid finite difference techniques:

Simulation of oscillations in shallow circular basins". J. Fhys.

Oceanography 7, 284,

40

PRI ST




41

Append1x

Typical set of macro definitions

$MACROD. " ,L$DELTOK])
$HACRO(SHAX,6510)"
$HACROCIVNAX,1738) "
$MACRO(CICHAX,1648)"
$HACRO(NAPMAXH,72) "
$MACRO(MAPMAXV,22) "
$MACRO(SERAS, 1) "
$HACROCOUTLUN,S) ™ “
$HACROCINLUN,D) " 1
$NACRO(CHARACTER,LOGICAL *1)~ ;

R




Main proaram for driving the scalar advection code

$INCLUDE(CHAC.MAC)SDELTOK

[ N o IR el o ]

1

(5]

96

TYFE 1

FORMAT(” N,DT”)

ACCEPT =,N,DT
WRITECQUTLUN,2) N,DT
FORMAT(” N,DT”,14,F12.5)
CALL CTEST(N,DT)

sT0P

END

SUBROUTINE CTEST(NUMDIV,DT)
WRITE(1,98) NUMDIV,DT
FORMAT(” N,DT",16,F14.6)
ONEGA=6.283185

NSTEPS=1./DT

CALL HEXTOP(NUMDIV)

CALL VST0(1,30)

CALL CIKBND

CALL SUGRID(20)

IPLY=2

CALL CVLUCIPLW)

IPY=9

CALL CTUC(IPW)

CALL TSTCTR(IPW)

CALL GRDLEN

I1P=23

IU=24

1¥=25

IPL=26

IPN=27

IuL=28

1vL =29

CALL TFIELDC(IP)

CALL SBROT(OMEGA,IUV)

CALL LUNPCIPLW,IF.IFL)
Remove the £s from the next three lines to impose rigid b.c.
CALL LUNPC(IPLY,TU,IUL)

CALL LUMP(IPLW,IV,IVL)

CALL RIGBND(IUL,IVL,IVU,IV)
DO 10 I=1,NSTEPS

CALL ADVECTC(IPN,IPL,IFP,IU,IPY,DT)
CALL COPYCIPL,IPN)

CALL UNLUNPC(IPLY,IPL,IP,1.E-D)
IF (MOD(I,30) .EQ. O) CALL MAXMINCIP)
CONTINUE

CALL MAXMINCIP)

RETURN

END
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SUBROUTINE GRDLEN
$ INCLUDE (TRG.DCL)"

J=1

NSEG=0

XNIN=1,E10

XMAX=0.

XNEAN=0.

DO 1 I=1,NUNV

JP=Je

NV=1V(JP)

JA=IV(D)

X=S(JA)

Y=5(JA+1)

DO 2 K=1,NV

JK=JP+K

JC=1V(JK)

JB=IV(JC)

XX=S(JB)

YY=5(JB+1) y
D=SQRT((X-XX)#82¢(Y-YY)*#2)
NSEG=NSEG+!

XNEAN=XNEAN+D

IF (D .6T. XMAX) XNAX=D

IF (D .LT. XMIN) XMIN=D
CONTINUE

J=J+IVS1Z

XNEAN=XMEAN/NSEG

FORMAT(” NIN,MNEAN,NAX’,3F12.5)
URITE(1,3) XNIN,XHEAN,XNAX
RETURN

END

SUBROUTINE TFIELD(IPOS)
$INCLUDE(TRG.DCL) "

YC=0.

XC=1.

RC=.9

1=1

DO 1 II=1,NUMV

K=IV(1)

X=5(K)

Y=S(K+1)
R=S@RT({X-XC)*82+(Y-YC)##2)/RC
C=0.

IF (R .LT. 1.) C=(2.8R-3.)sRsR+1,
S(K+IPOS)=C

1=1+1V§1Z

RETURN

END

{
i
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Main progras for the stallow water equations code

$INCLUDE(TMAC.MARC)SDELTOK
DIMENSION ERAS(SERAS)
DIMENSION CONVAL(10)
LOGICAL PLOT
PLOT=.FALSE.
ASCALE=1.
B1=.04
CALL INPUTC(’DT....",DT)
X=2
CALL INFUT(“NUMDIV-,X)
NUNDIV=X
X=101
CALL INPUT(’NSTEPS”,X)
NSTEPS=X
x=10
CALL INPUT(“NCONT “,X)
NCONT=X
Do 2 I=1,10
2 CONVAL(I)=1%,2-.1
CALL HEXTOP(NUMDIV)
CALL VSTO0(1,42)
CALL CIRBND
CALL SUGRID(20)
IPLU=2
CALL CVLUW(IPLY)
IPU=9
CALL CTuC(IPY)
CALL TSTCTW(IPW)
IP=23
IPU=24
IPV=25
IPUU=26
1IPUv=27
IpPyv=28
1PLA=29
IPULA=30
IPVLA=31
IPLB=32
IPULB=33
IPVLB=34
IPLC=33
IPULC=36
IPVLC=37
IPFX=38
IPFY=39
IPFXL=40
IPFYL=41
CALL INITFCIP,IPU,IPY)
CALL LUMP(2,1P,IPLA)
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CALL LUMP(2,IFU,IFULA)
CALL LUNF(2,IPV,IPVLA)
CF=0.
CF=1.
CALL INPUTC(CF.... ,CF)
F=0.
CALL INPUTCF..... "L F)
W5X=.3
WSY=0.
CALL INFUTUC WSX... . WSX)
CALL INPUTC WSY... ,UWSY)
IF (FLOT) CALL FLOTS(ERAS,%900,5.5)
B0 10 I=1,NSTEPS
IF (MODCI-t NCOMIY .NE. 0) GU TO 9
CALL UNLUNF{2,IPLA,IF,1.E-T)
CALL QPRCONCIF,0.,2.)
CALL EWFLOT(IF,2.,0.) .
If (FLOTY CALL ORIGIN(S.5,0.) !
IF (PLOT) CALL DRAWVCIPLA,IPULA,IFVLA,IFR,IPU,IFY,ASCARLE,IPLW) '
9 CONTINUE
CALL STEP(IPLB,IFULB,IPVLB,
1 IFLA,IPULA,IPVLA,
2 IPLA,IPULA,IPYLA,
3 IP,IPU,IPV,IFUU,IPUY,IPVY,
4 IPFX,IPFY,IFFXL,IPFYL,IPW,DT,F,CF,WSX,USY)
CALL MAXNINCIF)
CALL MAXMINCIPU)
CALL MAXMINCIFV)
CALL STEP(IPLC,IPULC,IPVLC,
t IPLA,IPULA,IPVLA,
2 IPLB,IPULE,IPVLB,
3 1P, IPU,IPV,IPUU, IPUYV,IPVY,
4 IPFX,IFFY,IFFXL,IPFYL,IFW,DT,F,CF,RSX,NSY)
CALL COPY(IFLA,IFPLC?
CALL COPY(IPULA,IFULC)
CALL COPY(IPVLA,IPVLC)
10 CONTINUE
If (PLOT) CALL ORIGIN(S.5,0.)
IF (PLOT) CALL ENDFPLT
STor
END
SUBROUTINE INPUT(STRING,X)
CHARACTER STRING(4)
WRITE(DUTLUN,1) STRING,X
| FORMAT(" Enter value for ~,641,° Ferhaps ,1F12.3)
ACCEPT ,X
RETURN
END




Common block TRG.DCL

CONNON /TRG/ S¢SHAX),IV(IVNAX),IL(ICHAX),
. SCALE,

» NEWV,NEWC,IVSIZ,ICSIZ,NUNC,NUNY,NBV,]IBVF
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Library of subroutines for triangular qrid codes

$INCLUDE ( THAC . NAC) $DEL TOK
SUBROUTINE ADVECT(IPCN,IPCL,IPC,IFY,IPW,DT)
$INCLUDE(TRG.DCL) "
J=1
DO ! I=t,NUNV
K=IV(J)
NV=TV(J+1)
KIPC=K+IPC y
KIPU=K+IPU
KIPY=K+IPY
KIPCN=K+IPCN
S(KIPCN)=S(KIPC)#(S(KIPU)*S(KIFN) +S(KIPU+1 ) $SIKIFU+7))
DO 2 IN=1,NV
JIN=J+IN
JP=IV(JIN+T)
KP=IV(JP)
KIPCN=K+IPCN '
KPIPC=KP+1PC
KPIPU=KP+IPU 0
KIPUIN=K+IPU+IN
2 S(KIPCN)=S(KIPCN)+S(KPIPC)*(S(KPIPU)*S(KIPUIN) ¢ ‘
1 S(KPIPU+1)¥S(KIPUIN+7))
KIPCN=K+1PCN
KIPCL=K+IPCL
S(KIPCN)=S(KIPCL)-BT+S(KIPCN)
1 J=J+IVSIZ
RETUR’.
END

PP S U

PRONF - TR S - Py

SUBROUTINE CIREND
$INCLUDE(TRG.DCL)

DTH=6.283184/NBV

J=IBVF

TH=0.

DO 1 I=1,NBY

IF (J .EQ. 0) GO TO 9

IF (IV(J#1) .EQ. 6) GO TO ¢

K=IV(J)

S(K)=COS(TH)

S(K+1)=SIN(TH)

TH=TH+DTH
1 )=IV(Je7) ,

IF (J .E@. 0) RETURN
8 FORMAT(” CIRBND ERROR’,2110)
9 WRITE(OUTLUN,8) I,J

STOP

END




SUBROUTINE CONFLT(IFLD,CONVAL,N)
$ INCLUBECTRG.DCL) "

DIMENSION CONVAL(1),F(3),KV(3),XV(3),Y¥(3),XL(2),TL(2)
J=1
DO 1 I=1,NUMC
D0 2 JJ=1,3
NRNENTRN
W=IC(J4D)
Ka=IV(JV)
KV (JJ)=Kh
KAIFLD=KA+IFLD
FOIDI=SIKATFLD)
XV(JJ)=S(KA) *SCALE
2 YVU(JJ)=S(KA+1)#SCALE
DO 4 NC=1,N
N1=0
FC=CONVAL (NC)
D0 3 JA=1,3
JB=JA+
IF (JR .EQ. 4) JB=!
IF ((F(JA)-FCI$(FC-F(JB)) .LE. 0.) GO 10 3
NI=NI+1
ALPHA=(FC-F (JA)) /(F(JIB)-F(JAS)
XLONID=(1.-ALPHA) #XV(JA) +ALPHASXV (JB)
YU(NI)=(1.-ALPHA) #YV(JA) +ALPHASYV(JB)
3 CONTINUE
IF (NI .EQ. 0) GO TO 4
CALL LINE(XL,YL,2,1,0,0)
4 CONTINUE
) J=J+ICSIZ
RETURN
END

SUBROUTINE CONSKY (IFRON)
$INCLUDE(TRG.DCL) "
SUM=0.
J=1
DO 1 I=1,NUNV
K=1V(J)
KIFRON=K+IFRON
SUN=SUN+S (KIFRON)
1 J=J+IVSIZ
3 FORMAT(” FIELD’,I5,” INTEGRAL”,1F15.9)
WRITECOUTLUN,3) IFRON,SUN
RETURN
END
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SUBROUTINE COPY(ITO,IFROM)
$INCLUDLCTRG.DCL) "

J=t1

DO 1 I=1,NUNV

K=Iv(d)

KITO=K+ITO

KIFROM=K+IFROM

S(KITO)=S(KIFROM)
t J=J+IVSIZ

RETURN

END

SUBROUTINE CTW(IPOS)

LOGICAL NEIGH
$INCLUDE(TRG.DCL) "

1=1

DO 1 II=1,NUNV

NV=TV(I+1)

K=1V(1)

X=S(K)

Y=5(K+1)

KIPOS=K+IP0S

S(KIPOS)=0.

DO 2 J=1,NV

KIPOSJ=KIPOS+J

2 S(KIP0SJ)=0.

NVK1=NV-1

DO 3 JP=1,NVUNI

1JP1=TeJP+1

NP=IV(IJP1)

KP=IV(NP)

PX=S(KP)

PY=S(KP+1)

JPF1=JP 41

U0 3 JO=JPP1,NV

1J01=1+J0+!

NO=IV(IJ01)

IF (.NOT. NEIGH(NP,NQ@)) GO TO 3

KQ=IV(NQ)

2x=S(Ka)

QY=S(KQ+1)

PQx(PX-X)#(QY-Y)-(PY-Y)$(GX-X)

SI16=1.

IF (P@ .LT. 0.) SIG=-1,

IF (IV(JP+1) .EQ. &) GO TO 4

DXx.5¢SIG%(PY-Y)

DY=,58516%(PX-X)

KJP=KIPOS+JP
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SUNTFOS) =StK1PUS) # . 75% DX
SEKIPOS+7)=5(KIP0OS+7)+.,725+0Y
S(KJF)-S(KJP)+,25+DX
S(KJP+7)=5(KJP+7)+.25+DY

IF (IV(JB+t) ER. 6) GO 10 5
DX=-.5¢SIG*(0QY-Y)
0y=,5¢S16*(QX-X)
S(KIPOS)=5(KIP0S)+.75+DX
S(KIPOS+7)=S(KIPOS+7)¢.758DY
KJIP=K1POS+J@
S(KJP)I=5S(KJP)+.25DX
S(KJP#7)=5(KJP+7 )+, 25DY
CONTINUE
DX=-S1G*(FY-.5%(QY+Y)) /3,
DY=SIG*(PX-.5%(QX+X)) /3.
EX=SIG*(AY-.52(PY¢Y)) /3.
EY=-SIG#(QX-. 3% (PX+X)) /3.
S(KIPDS)=S(KIPDS) +5.%(DX+EX)/12.
S(KIPOS+7)=S(KIPOS+7)+5.8(DY+EY)/12.
KJP=KIPOS+.1P
S(KJP)=S(KJP)+DX/6.+35.3EX/12.
S(KIP+7)=5IKJP+7)+DY/6.43.0EY/12.
KG=KI1POS5+JQ
S(KQ)=S(KQ)+),.3DX/12.4EX/S.
S(KQ+7)=S(KQ-7)+5.80Y/12.+EY/6.
CONTINUE

I=1+1VS12

CONTINUE

RETURN

END
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SUBROUTINE CVLW(IPOS)
LOGICAL NEIGH

$INCLUDE(TRG.DCL) "

3

1

A1=11./54,

A2z7,/108.

I=1

DO 1 II=1,NUNV

NV=IV(1+1)

K=IV(I)

X2§(K)

Y=5(K+1)

KIPOS=K+IPOS

S(KIPGS)=0.

DO 2 J=1,NV

KIPDSJ=K+IPOS+J)

$(K1PDSJ) =0.

NVK12NY-1

DO 3 JP=1,NVUN1

1JP=1+JP

NP=IV(1JP+1)

KP=IV(NP)

XP=5(KP)

YP=S(KP+))

JPPI=JP+1

DO 3 J@=JPP1,NV

1J@s1+J0

NO=IV(IJR+T)

IF (.NOT. NEIGH(NP,NQ)) GO TO 3
KQ=IV(NQ)

X0=5(KQ)

Y@=5(KQ+1)
DELTA=,3#ABS((XP-X)#(Y0-Y)-(YP=Y)#(XQ-X))
KIPOS=K+1POS
S(KIPOS)=5S(KIPOS)+A12DELTA
KIPOSJP=KIPOS+JP
S(KIPOSJP)=S(KIPOSJP) +A2¢DELTA
KIPOSJQ=KIPOS+J0
S(KIP0SJQ)=S(KIPOSJQ) +A2+DELTA
CONTINUE

Is1+1VS12

CONTINUE

RETURN

END

51

|
|




SUBROUTINE DRAUVCIPL,IFUL,IPVL,IF,IFU, 1PV, ASCALE,IPY)

$INCLUDECTRG.DCL) "

10

DINENSION X(5),Y(5)

ERR=1 ,E-4

CALL UNLUNP(IPY,IPL,IP,ERR)
CALL UNLUNP(IPY,IPUL,IPU,ERR)
CALL UNLUMPCIPU,IPVL,IPV,ERR)
J=1

DD 10 1=1,NUMV

K=Iv(J)

XX=5{(K)*5CALE
YY=S{K+1)sSCALE

KIP=K+1F

P=S(KIP)

U=S{KIPU)/FPeSCALE

KIPY=K+1PY

V=S(KIPV)/P*SCALE

UV=SART (UsU+VxY)

IF (Uv LT, .0V%ASCALE) 80 TO 10
DX=ASCALE*U*,S
BY=ASCALE*Vs. S

X{1)=XX+DX

X2 =XX-DX

Y(1)=YY+DY

Y(2)=YY-DY

DX=,42DX

DY=,.A%DY

X{3y=X(1)-DX-DY
Y(3)=Y(3)~DY+DX
X(§)=X(1)-pX+DY
Y(S)=Y(1)-DY-DX

Yi4)=Y(1)

X{41=X(1)

CALL LINE(X,Y,2,1,0,0)

CALL LINE(X(3),Y(3),3,1,0,0)
J=J¢IVSIZ

RETURN

END
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SUBROULTINE DRCELL

$INCLUDE(TRG.DCL) "

(28]

DINENSION X(2),Y(2)

J=1

BO 1 I=1,NUNY

K=10(J)

X(1)=§(K)#SCALE

Y{1)=5(K+1)*SCALE

CALL SYMBOL(X,Y,.05,2,0.,1)

J=J+IVS17

J=1

DO 2 I=1,NUNC

JAZIC(J+1)

JR=IC(J+3)

JC=IC(J+3)

KASIV(JA)

KB=IV(JB)

KC=IV(JC)

XA=S (KA)*SCALE

YA=S(KA+1)*SCALE

XB=5(KE)*5CALE ¥
YB=§(KB+1)*SCALE .
XC=§(KC)*5CALE b
YC=5(KC+1)*SCALE

X6=(XA+XB+XC) /3.

YG=(YA+YB+YC) /3.

X(1)=XG

Y(1)=Y6

X(2)=.5%(XA+XB)

Y(2)=.5%(YA+YB)

CALL LINE(X,Y,2,1,0,0)

X(2)=.5% (XB+XC)

Y(2)=.5%(YB+YC)

CALL LINE(X,Y,2,1,0,0)

X(2)=.5¢(XC+XA)

Y(2)=.58(YX+YA)

CALL LINE(X,Y,2,1,0,0)

J=J+1CS12

RETURN
END




SUBROUYINE DRGRID

$INCLUDE(TRG.DCL) "

DINENSION X(2),Y(2)
J=t

DO 1 I=1,NUNY

K21V (J)

NU=IV(G+1)
X(1)=S(K)*SCALE
Y(1)=S(C+1)*SCALE

DO 2 IP=1,NV

JIP=J+1P

JP=IVLJIIP+T)

IF (JP .GT. J) GO 70 2
KP=IV(JP)
X(2)=5(KP)*SCALE
Y(2)=5(KP+1)*SCALE
CALL LINE(X,Y,2,1,0,0)
CONTINUE

J=J+1Vs12

RETURN

END

SUBROUTINE EWPLOT(IF,ZHAX,IMIN)

$INCLUDE(PAGE.DCL)"

—_r

LOGICAL FAIL

CHARACTER ISP,ISTAR,IVERT,IHOR

DATA ISP/” 7/,1STAR/ %"/, IVERT/" i/, INOR/" "/
DO t J=1,MAPMAXV

0 2 I=1,MAFPMAXH

IHAP(T,J)=15P

IfF (I JE@. | .OR. 1 .EO. MAPMAXH) IMAP(I,J)=IVERT
IF (J JEQ. 1 .OR. J .EQ. MAPMAXV) IMAP(I,J)=1HIR
CONTINUE

CONTINUE

A=2./(HAPNAXH-1.)

B=-1.-A

C=(MAPHAXV-1.)/ (ZNIN-INAX)

h=1.-CsINAX

BO 3 I=1,NAPMNAXH

X=A*1+B

CALL INTPOLC(IP,X,0.,Z,FAIL)

IF (FAIL) GO 10 3

J=C*2+4D

IF (J .LT. 1 .OR. J .6T. MAPMAXV) GO 10 3
INAP(T,J)=1STAR

CONTINUE

FORMAT(71°,/,(5X,MAPMAXH AY))

WRITE(OUTLUN,4) INAP

RETURN

END
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SUBRQUTINE FLDAV(IFOSA,IPOSB,IPOSC)
$INCLUDE(TRG.DCL) "

J=1
BO 1 I=1,NUNV
K=Iv(J)
KIPOSA=K+1POSA
KIPOSB=K+IFOSB
KIPOSC=K+IFOS:
S(KIPOSA)=,5%(S(KIPOSB) +S(KIPOSC))
1 J=J+1vs812
RETURN
END

SUBROUTINE FRFCIPL,IFUL, IPVL,IP,IFU, IPV,IPFX,IPFY,IFFXL,IFFYL,
. DT,F,CF, WSX,WSY)
$INCLUDECTRG.DCL) "

CALL UNLUNP(2,IPL,IP,1.E-2)
CALL UNLUMP(2,IPUL,IPU,1.E-2)
Call UNLUNF(Z,IFVL,IPV,1.E-2)
J=1
PO 1 I=1, NUNY
IF (IV(J+1) .NE., &) GO TO 1
K=Iv(D
KIP=K+IP
P=S(KIP)
KIPU=K+IPU
U=S(KIPU)/P
KIPV=K+1PV 3
V=S(KIPV)/P
UV=SORT (UsU+Vs*¥)
KIPFX=K+IFFX
SC(KIPFX)={(WSX-CFrUeUy )P
KIFFY=K+IPFY '
S(KIFFY)=(USY-CFsysUV) %P

I J=ae1VS1Z _
CaLL LUMP(2,1FPFX,IPFXL) i
CALL LUMP(2,IPFY,IPFYL) b
J=1 {
BO 2 I=1,NUNV
K=IV(J) i
Alt=1, ‘
A12=-DT*F ,
A21=DTsf )
A22:1. *

KIPFXL=K+IPFXL
KIPUL=K+IPUL
B1=DT#S(KIPFXL)+S(KIFUL)
KIPFYL=K+IPFYL
KIPVL=K+IPVL




B2=DT+S(XIPFYL)+S(KIPVL)

D=A11$A22-A11*A21

S(KIPUL)=(R1sA22-A122B2) /D

S(KIPVL)=(AT13B2-B1sA21)/D
2 J=J+1VS12

RETURN

END

SUBROUTINE GIC(IP)
$INCLUDE(TRG.DCL) "
ICONEUT+1)=IP
IC(NEWC+2)=1F+]IVSIZ
ICINEUC+3)=NEWV-IVSIZ
IP=IP+IVSIZ
NEUC=NEWC+ICSIZ
RETURN
END

SUBROUTINE GUC(IP)
$INCLUBE(TRG.DLCL) "
ICINEUC+Y)=]P
IC(REUC+2)=NEWV
IC(NEWC+3)=NEWV-IVSI1Z
NEWV=NEWV+IVSIZ
NEWC=NEWC+ICSIZ
RETURN
END
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SUBROUTINE HEXTOF(N)
$INCLUDE(TRG.DCL)
SCALE=4.
Do 100 I=1,ICHAX
100 IC(1)=0
BO 101 I=1,IVMAX
101 IV(D)=0
NEWC=1
1V512=8
1CS1Z=4
1P=1
NEWY=1+(N+2)$IVSIZ
IN=N
B0 1 I1=1,N
Do 2 J=t,1Iu
CALL GUCCIP)
CALL GDC(IP)
CALL GUC(IP)
IP=IP+IVSIZ
NEWV=NEWV+IVSIZ t
1 IU=1U+1 ‘
IN=10-1 !
D0 3 I=1,N
DO 4 J=1,1u
CALL GBCCIP)
4 CALL GucC(IP)
CALL GDC(IP)
IP=IP+IVSI2
NEWV=NEWV+IVSIZ
3 IN=1Y-1
NEWV=NEWV-1VSIZ
NUMC=(NEWC-1)/1ICSIZ
NUNV=(NEWY-1)/1VS512
WRITE(DUTLUN,S) NUMC,NUNV
3 FORMAT(” Allocated cells and vertices’,2110)
Je=1
DO t0 I=1,NUNC
IVA=IC(JC+T)
IVB=IC(JC+2)
1VC=IC(JC+T)
CALL VLINK(IvA,IVB)
CALL VLINK(IVB,IVC)
CALL VLINK(IVC,IVA)
CALL VLINK(IVB,IVA)
CALL VLINK(IVC,IVB)
CALL VLINK(IVA,IVD)
10 JC=JC+ICSIZ
1P=1
DO 20 I=1,NUNV
IF (IVC(IP+1) .LY, &) 60 TO 21
20 IP=1P+IVSI1Z

L)




(5]
ro

21

(&8
~d

24

30
295

FORMAT( NO BOUNDARY POINTS‘)
WRITE(OUILUN,22)

STOP
1B=1P

18VF=IB

1P=0

NBV=1

IVUIB+7)=1P

NV=IV(IB+1)

PO 23 I1=1,NV

IBI1=1B+141

J=IVCIBIT)

IF (J .EQ. 1F) GO 1D 23

IF ¢J .EQ. IBVF) GO TO 25

IF (IV(J+1) .LT. &) GO TO 24
CONTINUE

FORNAT(“ BOUNDARY ERROR*)
YRITE(OUTLUN,26)

CALL VCDUNP

STOP

NBV=NBY+1

IP=1B

1B=J

60 10 27

FOKNAT(- NUWBER OF BOUNDARY VERTICES’,I110)
URITE(OUTLUN,30) NBY

IBVF=1B

RETURN

END

SUBROUTINE INITFC(IP,IPU,IPV)

$INCLUBE(TRG.DCL) "

J=1
DO 1 I=1,NUNV
K=1V(J)
KIP=K+IP
S(KIP)=1,
KIPU=K+1PUY
S(KIPU)=0.
KIPVaK+IPY
S(KIPY) =0,
J=J+1VS117
RETURN

END
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SUBRQUTINE INTPOLCIFLD,X,Y,Z.FAIL)
$INCLUDE(TRG.DCL) "

LOGICAL FAIL
FAIL=.TRUE.
ICELL=1
DO 10 I=1,NUNC
IP=ICCICELL+1)
1Q=1C(ICELL+2)
IR=IC(ICELL+T)
JP=IV(IP)
Ja=1v(1m)
JR=IV(IR)
XP=S(JP)-X
YP=S(JP+1)-Y
X@=5¢JQ)-Xx
Y@=5(JA+1)-Y
XR=S({JR)-X
YR=S(JR+1)-Y
PA=XPsY(Q-YP=X0Q
AR=XAsYR-YQsXR ‘
RP=XR*YP-YRsXF
IF (P@+@R .LT. 0.) GB TO 1
IF (QR*KP .LT. 0.) GO TO 1
IF (PQsRP .LT. 0.) GO TO 1
JPIFLR=JP+IFLD
IP=S(JPIFLD)
JOIFLD=JO+IFLD
10=S¢JQIFLI)
JRIFLD=JR+IFLD
IR=S(JRIFLD)
D=XPs(YQ-YR)-YPk(XA~XR)+XA+YR-YQ:+XR
I=(XP2(YQsZR-ZA*YR)-YP*(XQ*ZR-ZQ:*XR) +IF* (XQsYR-YQR¢XK))/D
FAIL=,FALSE.
RETUFL
1 ICELL=ICELL+ICSIZ
10 CONTINUE
RETURN
END




FUNCTION INTRI(X,Y,ICELL)

$INCLUDE(TRG.DCL) "

LOGICAL INTRI
IP=ICCICELL+Y)
18=ICC(ICELL+D)
IR=ICCICELL+3)

JP=1IV(IP)

Ja=Iv(ia)

JR=1IV(JIR)

XP=§¢J4P)-X

YP=S(JP+1)-Y

Xa=5(J@)-X

YR=S(JQ+1)-Y

XR=S(JR)-X

YR=S(JR+1)-Y
PA=XPxYQR-YP+XQ
AR=XQsYR-YAsXR
RP=XR2YP-YR*XP

IF (PO*QK .LT. 0.) 60 TO 1
IF (QR*RP .LT1. 0.) GO TO 1
IF (PQ*RP .LT. 0.) GO TD 1
INTRI=.TRUE.

RETURN

INTRI=,.FALSE.

RETURN

END
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SUBROUTINE LUMF(IFOS, IFROM,IT0)

$INCLUDE(TRG.DCL) " "

J=1

DO 1 I=1,NUNV i

K=IV(J)

NV=TV(J+1)

KITO=K+IT0

KIPOS=K+IP0OS

KIFRON=K+IFROM

S(KITD)=S(KIPOS)*S(KIFRON)

DO 2 IN=1,NV

JINT=JEIN4Y

JP=IV(JIND)

KP=IV(JP)

KIPIN=KIPOS+IN

KPIFR=KP+IFRON

S(KITO)=S(KITO)+S(KIPIN)*S(KPIFR) ;4

1 J=J+1VS1Z :
RETURN
END

r

SUBROUTINE MAXNINCIFLD)
$INCLUDE(TRG.DCL)"
XMAX=S(IFLD+1)
XNIN=XMAX .
J=1 -
DO 1 I=1,NUNV
K=IV(D) r
KIFLD=K+IFLD
X=S(KIFLD)
IF (X .GT. XMAX) XMAX=X
IF (X .LT. XNIN) XNIN=X
1 J=J+1VS1Z
2 FORMAT(" MAX,HIN’,2F10.6)
URITE(OUTLUN,2)XNAX, XHIN
RETURN
END

- aaa
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FUNCTION NEIGH(IP,I1Q)
$INCLUBE(TRG.DCL) "
LOGICAL NEIGH
NU=IV(IP+1)
DO 1 I=1,NV
IPI1=IP+1+1
IF (IVC(IPIY) .EQ. IQ) GO YO 2
1 CONTINUE
NEIGH=.FALSE.
RETURN
2 NEIGH=.TRUE.
RETURN
END

SUBROUTINE PRCONCIFLD, XMIN,XMAX)

LOGICAL FAIL

DIMENSION ICON(13),LIN(MAPHAXH)

n“‘h lco"/l_/,.’o/,-"/,/2-”/3”/4/,/5/’/6”/71’,8/’/9/’/+,'/ //
BX=-(MAPMAXH+1.)/MAPNAXH

BY=(NAPNAXV+1.)/MAPNAXY

URITE(OUTLUN,S)

DO 1 J=1,MHAPNAXV

Y=-J/(NAPHAXV/2.) +BY

DO 2 I=1,MAPMAXH

X=1/(NAPNAXH/2.)+BX

R=XsX+Y2Y

K=13 1
IF (R .GT. 1.) GO TD 3

CALL INTPOLCIFLD,X,Y,Z,FAIL) |
IF (FAIL) 60 TO 3 ;‘

K=10.%(Z-XMIN)/ (XNAX-XNIN)
IF (K .LT. 0) K=-1

IF (K .GT. 10) K=10

K=K+2

LINCI)=1CON(K)

CONTINUE \
4 FORMAT(3X,NAPMAXH A1)
URITECOUTLUN,4) LIN

1 CONTINUE

3 FORNAT( 1)
RETURN
END

[ S 7]
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SUBROUTINE PRFLIDS(I1,12)

$INCLUDE(TRG.DCL) "

.~

DINENSION V(10)
WRITE(OUTLUN,4) I1,12
FORMAT(” FIELDS’,I4, THROUGH-,I4)
URITE(OUTLUN,4) It,12
J=1

DO 1 I=1,NUNV

K=1V(J)

NN=1

DO 2 N=It,12

KN=K+N

VINN)=S(KN)

NN=NN+1

IF (NN .LE. 10) GO TO 2
WRITECOUTLUN,3) I,V
FORMAT(” 7 ,18,10F12.6)
NN=1

CONTINUE

NN=NN-1

IF (NN .6T. 0) URITE(OUTLUN,3) I,(V(N),N=1,NN)
J=J+IVSIZ

RETURN

END

SUBROUTINE QPRCONCIFLD,XMIN,XMAX)
CHARACTER ICON(13)

$INCLUDE(TRG.DCL) "
$INCLUDE(PAGE.DCL) "

()

B“T“ Ico"//,.l’/of'f‘/,/2/,13’,/4/'15-"161"71'181’/9!'/*."1 I/

DO 2 J=1,MAPMAXV

DO 2 I=1,MAPHAXH
INAP(I,J)=ICON(13)

IVERT=t

Do t II=1,NUNV

KK=IV(IVERT)

X=5(KK)

Y=5(KK+1)

KKIFLB=KK+IFLD

7=S(KKIFLD)

I= (MAPNAXH/2.)3X+NAPNAXH/2.+1,
IF (1 .LT. 1) I=

IF (1 .GT. MAPHAXH) I=zNAPMAXH
J=- (HAPNAXV/2.)sY+NAPNAXV/2. 41,
IF (J LT, 1) Js=t

IF (J .GT. NAPNAXV) J=NHAPMAXY
K=10,8(2Z-XNIN)/(XNAX-XHIN)

IF (K .LT. 0) K=-1

IF (K .67, 10) K=10
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K=K+2
INAP(T,))=ICON(K)
IVERT=IVERT+IVSIZ
FORMAT( 17,7, (5X,MAPNAXH A1))
URITE(QOUTLUN,3) INAP

RETURN

END

SUBROUTINE RIGBND(IPUL,IPVL,IPU,IPV)
$INCLUDE(TRG.DCL)"

CALL UNLUNP(2,IPUL,IPU,1.E-3)
CALL UNLUMP(2,IPVL,IPV,1.E-3)
J=IBVF

DO 1 I=1,NBV

K=Iv))

KIPU=K+IPU

S(KIPU)=0.

KIPV=K+IPY

S(KIPV)=0.

J=IV(J+7)

CALL LUNP(2,1IPU,IPUL)

CALL LUMP(2,IPV,IPVL)

RETURN

END

SUBROUTINE SBROT(OMEGA,1POSY)
$INCLUDE(TRG.DCL) "

I=1

DOt II=1,NUNV

K=Iv(I)

X=8(K)

Y=5(K+1)

I=1+1VS1Z

KIPDSU=K+IPDSU
S(KIPOSU)=-YsOMEGA
S(KIPOSU+1)=Xs0NEGA

RETURN
END
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SUBROUTINE STEPCIPLN,LPULN,IFVLN,1FLO, IFULG, IPVLO, IPL, IPUL,IPVL,
. 1P, 1pU, 1PV, 1PUU, 1PUD, IPYV, IPFX, EPFY, TPFxL, tpFYL, tpu, BT,

. F,CF,USX,HSY)

$INCLUBE (TRG.DCL)

CALL UNLUMP(2,1PL,IP,1.E-2)

CALL UNLUMP(2,IPUL,IPU,1.E~2)

CALL UNLUMP(2,1PVL,IPV,1.E-2)

J=1

DO 1 I=1,NUNV

K=IV(J)

KIP=K+IP

KIPU=K+IPU

KIPV=K+IPV

KIPUU=K+IPUU

KIPUY=K+IPUV

KIPYY=K+IPYV

P=S(KIP)

U=S(KIPU) /P

V=S(KIPV)/P

S(KIPUU)=P# (UsU+.5%P)

SUKIPUV) =PaU#V

S(KIPYV) =P (V#V+.5%P)
1 J=J+1VS1Z

CALL TRNSPT(IPLN,IPLO,IPU,IPV,IPY,DT)

CALL TRNSPT(IPULN,IPULO,IPUU,IPUV,IPW,DT)

CALL TRNSPT(IPVLN,IPVLO,IPUV,IPVV,IPW,DT)

CALL FRFCIPLN,IPULN,IPVLN,IP,IPU,IPV,IPFX,IPFY,IPFXL,IPFYL,DT,
. F,CF,WSX,USY) ]

CALL RIGBND(IPULN,IPVLN,IPU,IPV) ]

RETURN ‘

END )
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SUBROUTINE SUGRID(NITER)
$INCLUDE(TRG.DCL) "
RELPA=1,388

DO 9 MI=1,NITER

J=1

CRMAX=0.

DOt I=t,Nunv

NV=IV(J+1)

IF (NV .LT. é) GO TO 1

X=0.

Y=0.

D0 2 K=1,6

JK1=zJd+14K

JN=IV(JKT)

JS=1VOIN)

X=X+5(JS)

Y=Y+5(JS+1)

JS=IV(D)

X0=5(J$5)

Y0=5(JS+1)

X=X/6.

Y=Y/6.
CH=SQRT((X-X0}»#2+(Y-Y0)*%2)
IF (CH .GT. CHMAX) CHMAX=CH
S(JS)=RELPA*X+(1,.-RELPA)I*S(JS)
S(JS+1)=RELPASY+(1-RELPA)SS(JS+Y)
J=J+IVS12

FORMAT (- MAXIMUN DISPLACEMENT’,1F12.8)
WRITE(OUTLUN,8) CHMAX
CONTINUE

RETURN

END
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SUBROUTINE TRNSF!(IN:W,10LD, It X, IFY, IPY,0OT)

$INCLUBE (TRG.DCL)

J=1

60t I=1,NUNV

K=IV(J)

NV=IV(J+1)

KINEW=K+INEW

KIFX=K+IFX

KIPU=K+IFW

KIFY=K+IFY

SKINEW)=S(KIFX)*S(KIPW) +S(KIFY)$S(KIPW+7)

DO 2 IN=1,NV 4

JIN=J+IN

JPEIV(JINGT)

KP=1V(JP)

KPIFX=KP+IFX

KIPWIN=KIFU+IN

KPIFY=KP+IFY

SKINEW) =S (KINEW) +S(KPIFX)#S(KIPNIN) +S(KPIFY)*S(KIPUIN+7)

KIOLD=K+IDLD

S(KINEW)=S(KIOLD)-DT+S(KINEW)

1 J=J+IVSI1Z N
RETURN i
END ;

rJ

SUBROUTINE TSTCTU(IPOS)
$INCLUDE (TRG.DCL) ~
WRITECOUTLUN,4)
4 FORMAT(" TEST T-WEIGHTS’/8X,”17,8X, NV’ ,18X, TEST X~,14X, TEST Y-)
1=1
10 1 1I=1,NUNY
NY=IV(I+1)
K=IV(1)
KIPOS=K+IPOS
X=S(KIPOS)
Y=S(KIPQS+7)
DO 2 J=1,NV
KIPOSJ=KIPOS+J
X=X+S(KIPGSJ)
Y=Y+5(KIPOSJ+7)
2 CONTINUE
3 FORMAT(1X,2110,2F20.10)
WRITE(OUTLUN,3) I,NV,X,Y
1 1=1+1V51Z
RETURN
END




SURNOLT INE UNLUMFCIFOS. IFRON,1TO0,IRR)
$InCLUDE (TRG.DCL)
RELPA=1.3
NITER=25
DO 11 NIT=1,NITER
CHNAX=0,
J=1
[0 10 I=1,NUNYV
K=Iv(J)
KITO=K+1TD
SOLD=S(KITO) 1
KIFROM=K+IFROM o
S(KITO)=S(KIFRON) ]
NV=IV(J+1)
00 12 IN=1,NV f
JIN=J+IN '
JP=IV(JIN+)
KP=1V(JP)
KIPSIN=K+IPOS+IN 1
KPITO=KP+ITO
12 S(KITO)=S(KITO)-S(KIPSIN)*S(KFITD) L ¥
KIPBS=K+IPOS ,
S(KIT0)=S(KITO)/5(KIPOS) L
CH=ABS(S(KIT0)-SOLD)
S(KITO)=RELPASS(KITO)+(1.~RELPA)*SOLD .
IF (CHMAX .LY. CH) CHMAX=CH
10 J=J+1VSIZ
IF (CHMAX .LT. EKR) GO TO 14

11 CONTINUE 1

13 FORMAT( " MAXIMUM CHANGE IN UNLUMP ,1F12.8) {

i WRITE(OUTLUN,13) CHMAX 4
14 CONTINUE

KETURN .

END k
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SUERQUTINE VCDUMF

$INCLURE(TRG.DCL)

1

~

w

WRITE(OUTLUN,1)
FORMAT(* CELL LIST")

J=1

DO 2 I=1,NUNC

JL=J+ICSIZ-1

WRITECOUTLUN,3) 1,J,(IC(K),K=d,JL)
J=J+1CS1Z

FORMAT(1X,6110)

J=1

FORMAT(“VERTEX LIST")
WRITECOUTLUN,4)

DO S I=1,NUNV

JL=J+1VS1Z

WRITECOUTLUN,&) I,J,(IV(K),K=d,JL)
FORKAT((1X,10110))

J=J+IVSI1Z

RETURN

END

SUBROUTINE VLINK(IVA,IVE)

$INCLUDE(TRG,.DCL) "

NV=IV(IVA+1)
IF (NV .E@. 0) GO TO 1

DO 2 I=1,NV

IVAT1=IVA+I+1

IF (IV(IVAI1) .EQ. IVB) RETURN
CONTINUE

IVCIVA+T)=NY+1

IVANV=IVA+NY

IV(IVANV+2)=IVB

RETURN

END

SUBROUTINE VSTG(IORIG,NUDS)

$INCLUDE(TRG.DCL) "

K=IORIG

J=1

DO 1 I=1,NUMV
IveJr=K
K=K+NWDS
J=J+IVSIZ
RETIRN

END
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